材質Q235 風壓中壓 風量中 噪音低 功率2.2-300
近年來 對離心通風機葉輪內部流動的研究**了明顯進展 , 有些研究成果已經應用到實際設計中,并獲得令人滿意的結果。目前 , 對離心通風機葉輪內部流動的研究仍是比較活躍的研究領域之一 ,筆者認為可在如下方面進行進一步研究:
( 1 )如何將近似模型方法在通風機方面的應用進行*深入的研究,結合已有的葉片設計技術,探索*加*的優化設計方法;
在風機排風口外安裝,內置消聲插片,使噪聲在通過構造的時削減。是降低空氣動力設備進、排氣口或沿管傳遞噪聲的有效措施。
圓弧段部位處形成許多渦流。渦流將與風機蝸殼及進風口零部件產生多次頻繁地碰撞而形成空氣動力噪聲。可在風機進風口處位于風機蝸殼內部的處設計制作即增設整流圈及擋板,就能有效地防止氣流在風機進風口處形成渦流,從而降低離心風機所產生的空氣動力噪聲。
在2根平相行的軸上設有2個三葉型葉輪,輪與橢圓形機箱內孔面及各葉輪三者之間始終保持微小的間隙,由于葉輪互為反方向勻速旋轉,使箱體和葉輪所包圍著的一定量的氣體由吸入的一側輸送到排出的一側。各支葉輪始終由同步齒輪保持正確的相位,不會出現互相碰觸現象,因而可以高速化,不需要內部潤滑,而且結構簡單,運轉平穩,性能穩定,適應多種用途,已運用于廣泛的領域。
理論和試驗都表明,離心葉輪的射流尾跡結構隨著流量減小*加強烈,而且小流量時,尾跡處于吸力面,設計流量時,尾跡處于吸力面和輪蓋交界處。為了提高設計和小流量離心通風機效率, 2008 年,田華等人提出了葉片開縫技術 ,該技術提出在 葉輪輪蓋與葉片之間 葉片尾部處開縫, 引用葉片壓力面側的高壓氣體吹除吸力面側的低速尾跡區, 直接給葉輪內的低速流體提供能量。