M-3000C 麥越環境 城市汽車尾氣碳排放氣體在線監測設備
CO2 作為最主要的一種溫室氣體主要來源于化石燃料的燃燒,與能源的生產與利用 密切相關。研究顯示,全球溫室氣體排放量的四分之三來自能源使用。然而多數能源企 業基于經營數據系數折算的碳排放計量 , 難以反映污染物的實際排放水平。為了更好地 解決碳排放量的測算問題 , 麥越環境基于此開發建立固定污染源碳排放在線監測系統。 監測系統在排放源采樣直接測量 CO2、CH4 等氣體濃度、煙氣流速和濕度參數,從 而得到碳排放量,數據準確度大大提高。管理系統利用實時監測數據、微尺度空氣質量 模型、大數據分析等技術手段,建立基于監測數據的碳排放核算方法體系,提升碳排放 核算數據的準確性和實時性。一旦碳排放量超出計劃標準,會及時做出預警。
M-3000C 麥越環境 城市汽車尾氣碳排放氣體在線監測設備
應用領域
電力、鋼鐵、水泥、化工、石化、有色、造紙等行業
技術原理
微流紅外傳感檢測技術的工作原理如右下圖所示,首先紅外光源發出的紅外光經過切光器進入測量氣室,CO2、CH4、N2O、CO 等異種 原子構成的分子對紅外光具有不同的吸收特性,若測量氣室中存在上述氣體,則進入測量氣室的部分紅外光會被吸收,未被吸收的紅外光進 入檢測器。檢測器由前氣室、后氣室、微流傳感器組成,前、后氣室充滿待測組分的氣體。在紅外光的作用下,檢測器前、后氣室中的氣體 發生膨脹;因為存在膨脹差異,所以會導致前、后氣室之間產生微小的流量;微流傳感器檢測到該流量后,會產生一個交流電壓信號,經信 號處理后得到氣體實時濃度。 創新性的隔半氣室進一步提高微流紅外氣體傳感器的穩定性和 低量程測量精度,從而在一個紅外光源和微流紅外探測器結構內, 實現對待測氣體的參比測量。該技術克服了水分干擾、采用單氣室 造成的測量穩定性差、采用獨立雙氣室工藝結構復雜等難點問題。