四通道動態LED陣列近紅外光譜儀
DUAL-KLAS-NIR
同步測量PSII活性(葉綠素熒光)和PSI活性(P700)PC(質體藍素)Fd(鐵氧還蛋白)的氧化還原變化
016年月Photosynthesis Research雜志發表了Schreiber博士團隊研究文章Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer,隆重介紹了設計的DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀。之后016年4月,017年1月Schreiber博士團隊再次發表文章,進一步闡述DUAL-KLAS-NIR的實際應用。
作為PSI的電子供體和電子受體,PC(質體藍素)和Fd(鐵氧還蛋白)對PSI的氧化還原起著至關重要的調控作用。但一直缺乏科學便捷的手段對其運轉狀態進行檢測。集成以DUALl-PAM-100為標志的第二代PAM的基本功能,采用*的去卷積技術(一種根據來源不同對信號進行分離的技術),WALZ公司推出了可以測量PC和Fd氧化還原狀態的新一代PAM熒光儀—DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀。
DUAL-KLAS-NIR不但集成了Dual-PAM-100的基本功能,可以同時測量PSP和PSI,而且能夠測量4組不同波段(780-80nm,80-870nm,840-965nm,870-965nm)的信號,實現對P700(PSI反應中心)、PC和Fd的氧化還原狀態分別測量。另外,它還可以測量由540nm和460nm光化光激發的葉綠素熒光。利用DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀,可以準同步地測量各種不同的信號,不僅在馳豫動力下,還可持續地在自然穩態下同時獲取各組分的信息。
突出特點
可測量活體葉片或懸浮液,對P700、PC和Fd分別進行連續的實時的去卷積分析。
同時測量分別由540nm(整個葉片)和460nm(表層細胞層)波段激發的兩種葉綠素熒光。
通過集成發光二極管技術,高度緊湊的固態照明系統,提供615nm,460nm的光化光和740nm波段遠紅光,以及615nm單周轉和多周轉飽和閃光。
擁有和DUAL-PAM-100相似的光學部件幾何結構,可與1010-DUAL兼容,結合GFS-1000光合儀,在可控條件(光照,溫度,濕度,CO濃度)下,同步測量氣體交換和電子傳遞相關的氧化還原。
測量光頻率范圍廣(1 - 400 kHz),允許連續評估Fo,可以在高時間分辨率下記錄快速動態瞬變(如多相熒光上升動力學或脈沖弛豫動力學)。
主要功能
測定質體藍素(PC),PS I反應中心(P700)和鐵氧還蛋白(Fd)的氧化還原變化。
通過應用創新的分析方法獲得PC,P700和Fd光譜特征。在線監測P700,PC和Fd的氧化還原變化,并確定PC / P700和Fd / P700的比值。
可以通過綠色或藍色PAM測量光來激發熒光。綠光比藍光更深入到葉子中。因此,綠色激發的熒光包括來自更深葉層的信息,因此非常適合與整個葉子的NIR吸收測量進行對比分析。專業數據記錄軟件,入門特別簡單??墒褂肈UAL-KLAS-NIR軟件的自動測量程序實驗,也可以編輯腳本(Script)或者保存手動測量程序(Trigger),輕松執行復雜的測量協議??勺远x測量動作用于特殊誘導過程動力學曲線數據獲取和分析。
兼具慢速動力學曲線(飽和脈沖分析、誘導曲線和光響應曲線)和快速動力學曲線(飽和脈沖動力學曲線、高達10μs分辨率的馳豫動力學曲線)。
DUAL-KLAS-NIR軟件近紅外測量光設置
同步測量Fluo, P700, PC, Fd慢速誘導動力學曲線
應用領域
光合作用電子傳遞過程各復合體的氧化還原狀態深入剖析,類囊體膜蛋白組分功能研究。
可廣泛應用于光合合成生物學研究相關的植物學,植物生理學,分子生物學,農學,林學的領域。
應用案例
DUAL-KLAS-NIR為光合作用開辟了一個全新的研究領域,實時顯示P700,PC和Fd在活體材料中的氧化還原狀態,在線解卷積氧化還原信號。實現PS I及其供體側和受體側氧化還原動力學的同步測量,從而了解它們圍繞光系統I的復雜相互作用,另外還可以探究PS I周圍的循環電子傳遞的信息。
在DUAL-KLAS-NIR出現之前,測量光系統I的有效量子產量,P700信號總是會摻雜Fd的貢獻和PC的變量。上圖中圖C顯示了不同光強梯度下甘藍型油菜葉片PSI的有效PSI量子產量Y(I),PSII的有效量子產量Y(II)和經PSI熒光修正后的PSII的有效量子產率Y(II)corr。經過修正后,Y(II)corr和Y(I)在低光強下相似(小于500μmol m- s-1)。然而,當光強大于500μmol m- s-1時,Y(I)明顯高于Y(II),Y(I)/Y(II)1高可達1.45.
光系統I的有效天線尺寸測量。植物樣品從在黑暗條件轉移到光下時,在PSI附近,首先PC被氧化,開始積累,之后才是P700被氧化。單純的PC信號變化的初始斜率可以用作PS I的有效天線尺寸的度量。
右圖是放大后的PC(紅色)和P700(藍色)初始吸光度變化,顯示了他們初始斜率的巨大差異。對于黑暗適應的葉子,轉到光下的短時間內,光系統I受體側未活化,Fd還原的初始斜率也也說明了這一點。
DUAL-KLAS-NIR軟件設有一個窗口顯示P700和PC氧化還原狀態的相對變化。該功能可以用來計算PC和P700之間的表觀平衡常數。這對研究P700與其供體側的相互關系是非常重要的。
對暗適應的葉子施加飽和脈沖,測量Fd氧化還原動力學。我們不難發現,飽和脈沖產生的電子將Fd還原,飽和脈沖之后的黑暗中,Fd被緩慢再氧化。之后,PSI的受體側的電子流被激活,再氧化動力學變得更快。在激活PSI的受體側之后,可以通過監測脈沖后Fd再氧化的速率來研究Fd的暗滅活。這些動力學變化可以通過指數擬合程序擬合。圖A給出了Fd再氧化動力學曲線指數擬合程序擬合的實例,圖B顯示了常春藤葉片不同暗適應時間后的PSI受體側的暗滅活動力學差異。
PC,P700和Fd的zui大NIR透射率變化與這些復合物的在樣品中的含量成比例,并且PC,P700和Fd的消光系數的比率是恒定的。這可以用于探究不同物種或不同生長條件下(例如陽生/陰生,脅迫/非脅迫)樣品的PC / P700和Fd / P700比率,以及PC和Fd庫的相對大小?,F已觀察到高PC / P700比率與高電子傳遞速率(ETR)值相關。上圖顯示,在常春藤陽生和陰生葉片中,相對于P700,它們PC和Fd含量有著顯著的不同。
主要測量參數:
葉綠素熒光測量:Fo, Fm, Fm’, F, Fo’, Fv/Fm, Y(II), qP, qL, qN, NPQ, Y(NO), Y(NPQ) , ETR(II)等參數,以及各種熒光動力學曲線。 P700測量:必須能夠測量Pm, Pm’, Y(I), ETR(I), Y(ND)和Y(NA)等參數,以及各種P700動力學曲線。
PC測量:PCm, PCm’, PCox, Rel PCox
Fd測量:Fdm, Fdm’, Fdred, Rel Fdred, Fd/PC
實時顯示數據采集,可以連續顯示數據采集過程即完整的動力學曲線過程軟件程序:慢速動力學曲線,快速動動力學曲線,曲線擬合